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The sedimentation of a small particle through a fluid-filled pore
of finite length
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Abstract. This paper investigates the axisymmetric sedimentation of a small slowly rotating and translating particle
through a fluid-filled circular pore of finite length which communicates with two half-space chambers of fluid. In
the quasi-steady Stokes approximation the particle is modelled by either a rotlet or Stokeslet, and potential-
theoretic methods are used to reduce each problem to the solution of coupled infinite systems of linear equations.
The numerical solutions of these sets of equations are used to compute approximations to the resistive torque and
drag experienced by the particle.

1. Introduction

In a recent paper Shail and Packham [1] have considered a class of axisymmetric problems
in which a rotating or translating particle sediments from a half-space of fluid into a
semi-infinite circular fluid-filled pore. The particle, which is assumed to be small compared
with the pore radius, is modelled by either a rotlet or a Stokeslet, and the fluid motion is
assumed to be sufficiently slow to permit the quasi-steady Stokes linearization of the
equation of motion. Using potential-theoretic methods the rotlet and Stokeslet problems
were reduced to the solution of infinite sets of simultaneous linear equations in the coef-
ficients in eigenfunction expansions of potential functions pertaining to the pore region.
These sets of equations were solved by the method of truncation, and a knowledge of the
coefficients allows the derivation of approximations to the drag and couple experienced by
the particle using formulae due to Brenner [2]. The semi-infinite pore configuration thus
complements the model proposed by Davis et al. [3] in which the membrane containing the
pore is assumed to be infinitely thin.

The purpose of this paper is to report the results of calculations in which the pore is of
finite non-zero length. Thus the basic hydrodynamic configuration consists of two half-
spaces of fluid connected together by a fluid-filled circular cylinder of finite length 21. The
slowly sedimenting particle is modelled by a rotlet or Stokeslet placed on the axis of
symmetry of the pore, either in one of the half-space chambers of fluid or within the pore.
The velocity and potential representations of [1] are extended to account for the presence of
a third fluid region, and the solution of the relevant potential problems is again reduced,
using the procedures developed in [1], to the consideration of infinite systems of simultaneous
linear equations. The numerical solution of these equations, by truncation, then allows the
computation of illustrative results for the variation of the torque and drag factors as
functions of pore length and the distance of the sedimenting particle from a membrane face.

An outline of the paper is as follows. In Section 2 the rotlet problem is formulated and
solved, numerical results being given in graphical form for the torque factor in Brenner's
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formula [2] for the resistive couple. In Section 3 we investigate the problem wherein the rotlet
is replaced by an axial Stokeslet, there being also a pressure driven flux M of fluid through
the pore. The end-product of this analysis is four infinite sets of simultaneous linear
equations for the expansion coefficients in various potential functions. The solution by
truncation of these sets of equations is used in Section 4 to compute the drag factor
appropriate to a particle sedimenting in a fluid with zero bulk flow. To take account of the
effect on the drag of a pressure-driven bulk flow it is necessary to solve a subsidiary
singularity-free problem in which the flow results from a pressure difference at infinity
between the half-space chambers of fluid. This situation was first considered by Dagan et al.
[4] and Section 4 concludes with an alternative formulation in which only half the number
of expansion coefficients are needed. Numerical results are presented for the pressure
difference at infinity as a function of pore length for unit flux, and the axial fluid speed, which
appears in the drag formula [2], is computed.

2. Basic equations and the rotlet problem

Let (Qe, 0, z) denote cylindrical polar conditions with origin 0. A membrane with impenetrable
walls of thickness 21 contains a circular cylindrical pore of unit radius, whose generators are
perpendicular to the parallel plane faces of the membrane (see Fig. 1). The origin O is located
at the point where the pore axis intersects one of the plane faces, a choice which enables a
comparison with the semi-infinite pore solution (1 - oo) to be made readily. Viscous
incompressible fluid occupies the half-space chambers z > 0 (region I), z < - 21 (region III)
and the pore (region II) -21 < z < 0, 0 < e < 1, 0 < 0 < 2r. An axisymmetric fluid
motion is generated by a point singularity located on the axis of the pore, and for sufficiently
small Reynolds numbers the velocity field v satisfies the linearized Navier-Stokes and
continuity equations

tt curl curl v = -Vp, (2.1)

div v = 0, (2.2)
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Fig. 1. The pore-membrane geometry.
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where p is the dynamic pressure and pu the coefficient of viscosity. v must also comply with
the no-slip condition on the membrane and pore walls.

Suppose now that the singularity is a rotlet of unit strength placed on the axis of symmetry
at z = h ( > 0) in region I, and oriented parallel to the z-axis. In the slow-flow approximation
the streamlines are circles lying in planes perpendicular to Oz, and v has a non-zero
component v(Q, z) in the O-direction only. Since v is independent of 0, the continuity equation
(2.2) is satisfied identically and (2.1) implies the constancy of p throughout the fluid. Further
from (2.1) v satifies the equation

O2v 1 v v a2V
0 + = 0, (2.3)ae2 + - 2 + Z = 0, (2.3)

implying that v cos 0 is a harmonic function.
Denote by v'(e, z), v"(, z) and v"'(e, z) the transverse velocity components in the fluid

regions I, II and III. As in [1] we write

vl(e, Z) = + V(e, Z), (2.4)

where R = [e2 + (z - h)2]1/2, R2 = [e2 + (z + h)2]12, and the second term in (2.4) is an
antiparallel image rotlet. The no-slip condition on z = 0, e > 1, requires that

v,(e, ) = 0, e > 1, (2.5)

and following Keer [5], (2.5) is satisfied identically by representing vI in the form

v,(e0, ) = - t3 /2 j,(t) { ot1/2J 3/2(Xt)Ji(oc)e-zdo} dt, z > 0, (2.6)

where the continuous function j, (t) is to be determined. In the pore region II separation of
variables in (2.3) provides the form

v"(Q, ) = (A e"" + Be-n +21))J( e), - 21 z 0, (2.7)
n=l

where, in order to satisfy the no-slip condition on the pore wall e = 1, the a, are the positive
zeros in ascending order of magnitude of the Bessel function J1 (x), and the A,, Bn are
constants. Finally in the singularity-free region III, a velocity field satisfying the no-slip
condition on the membrane wall z = - 21, > 1, is again supplied by the Keer form

v"'(e, z) = f t312 j3(t) { 1 o/2J3 /2(Ot)J(oQ)ei(z+21)da} dt, z 21. (2.8)

The unknown functions j, (t), j3(t) and the sequences of coefficients {An, {B, } in (2.6)
through (2.8) are now found, using the methods developed in [1], by requiring the continuity
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of velocity and shear stress across the pore/half-space interfaces at z = 0 and z = - 21.
Explicitly we have the conditions

v'(o, 0) = v"(e, ),

vn(,-21) = v(e, -21),

a- (Q, ) = (Q, ),TZ Od

az (Q 21) = avll (-21),

all for 0 < q < 1, which reduce, using results given in [5], to

(2 ' j(t) dt() (t2 2),/2dt = E (An + Be-

(-- 2 (t2 - e2)
f[ ()ef 0(t2 ) dt = - ) (Ane- 2"' + B,)Jl(oe),el~ (tZ e2)'12 n =l

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

6h2 + ( 2 1/2 I d e t3 jl(t) dt = a(An

(02 + h 2) a LO d o 2 (en) '

(2.15)

and

(I/2 o(e2 _ t3 )/ dt = E n(A.Ae 2"'e - B.)J 1(aoe), 0 < < 1.I} _Jo(~2- t
2

)1/
2

n=I

The integral equations (2.15) and (2.16) can now be solved to expressj, (t) andj3 (t) in terms
of the coefficients {An}, {B }, with the results

j(t) = t- 1/2 E l/2(An - Be 2 .)J3/2(ant) + (2)2 4
n=l+ h2)2

and

j3(t) = t- E a12(Ae -2 *nl - B.)J 3 2 (Unt), 0 t < 1.
tn=l

Turning next to (2.13) and (2.14) we multiply both by OJ (ave) and integrate from e = 0 to
= 1. After some manipulation we find

-'m/ 2 t3 2J 3 2 (amt)jl(t) dt = (Am + Bme 2 ")J4O(am),

- Bne-2")J (an),

(2.16)

(2.17)

(2.18)

(2.19)
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and

a.l/2 J t3 12J 3 2 (amt)j3 (t) dt = (Ame + Bm)Jo(m). (2.20)

Infinite sets of linear equations for the {An }, {Bn } now follow by eliminating j, (t) and j3 (t)
between (2.17), (2.18), (2.19) and (2.20), viz.

ra'mJ2(am)(Am + Bme -2e')

(A EA -Ben (a .) + sin (an + am) 2 sin am sin an)

n = I an - a m an + am aman

4 sin am h2 _ t2
+ h2 am 4 (t2h 2 2 cos at, (2.21)

1 + h am +4

and

+amJJO2(am)(Ame 2' l + B,)

(Ae-2 I (sin (an - am) + sin (an + am) 2 sin am sin oa 0
n= I an - am an + am aman

m = 1,2,.... (2.22)

In (2.21), (2.22) and elsewhere a factor (am - a,) - ' sin (am - an) is interpreted as unity when
m = n.

The systems of equations (2.21) and (2.22) are solved by truncation to finite sets, andj, (t),
j3 (t) then follow from (2.17), (2.18). In the limit 1 - oo, (2.22) becomes a set of homogeneous
equations with solution Bn = 0, n = 1, 2,.... The set (2.21) then reduces to that derived
in [1] for a semi-infinite pore.

When the rotlet is placed within the pore at z = -h, 0 < h < 21, the representations
(2.4) and (2.7) must be modified. Appropriate forms are

v'l(e,z) = vl(, z), z > 0, (2.23)

where v, is given by (2.6), and

v (e,z) = R 3 I (k) I, (ke) cos k(z + h) dk

+ Z (Ane"'z + Bne'(z+2°))Jl(an), -21 < z < 0. (2.24)
n=l

In (2.24) the first two terms constitute the velocity field produced by a rotlet placed on the
axis of an infinitely long cylinder [6], and (2.24) satisfies identically the no-slip condition on
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the pore walls. Proceeding as in the previous paragraph the simultaneous sets of equations
for the {A,}, {B,} are again found to have the forms (2.21) and (2.22) but with their
right-hand sides replaced by

nam(yo(m, h) + e-
e

mh) and ram(yo(m, h - 21) + e- ' (z - 2 ') )

respectively, where

4 K, (k)
y(m, h) = I(k)

x{sin sinh k kam sin am cosh k + k2 am cos a sinh k sin kh dk
k 2 + am

2 sin am 2 i h2 t2

na_(I + h -2) r Jo Ct-+- h 2 cos amt dt. (2.25)

The importance of the rotlet solution lies in the fact that it can be used to determine the
effect of the membrane on the torque T required to maintain the steady rotation of an
axisymmetric particle, the axis of rotation being the pore axis. Let T, be the corresponding
torque for the rotation of the body with angular speed fl in an unbounded fluid. Then
referring to [1] and [2], the ratio T./T is given by

=1 T C, + (-L) (2.26)

where c is the pore radius in physical variables, b = clhl, and L = max (b, c). Also the
torque factor C, is defined by

I a
C, = -½ lim (Qv*), (2.27)

2-O Q a
z-+h

where v* is the regular part (as e - 0, z -+ h) of (2.4) for the particle situated in z > 0 and
of (2.24) (as e -+ 0, z -+ - h) for the particle within the pore. Direct evaluation of (2.27)
shows that for the particle in the half-space

1 (h2 + 3)(1 - 3h2) 1 1
C1 - - + 6(h 2 + 1) + 2 tan- (h) + - (An - B e - 2 " )

8h3 6ir(h2 + f1)3 27TCh3 ( / 7E n~l ( n n=l

X an({-)2 + f (h- t) t dt (2.28)

whereas for the particle at z = -h, 0 < h < 21, inside the pore,

k2Ko 1 (k) 1kh ) 1h) (2.29)C 1 - 1 O dk - Y an{Ane q + Bne( 2I-)}, (2.29)
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Fig. 2. The torque factor C, plotted against particle position for various pore lengths.

The computation of C, is affected by first truncating the infinite sets of equations (2.21)
and (2.22) (or their modified forms for the rotlet inside the pore) to the same upper limit N
and using an appropriate numerical linear-equation solving routine. Numerical difficulties
in solving the resulting equations were experienced when the physical parameters h, I were
small, and an inspection of the condition number of the coefficient matrix disclosed ill-
conditioning. Use of the standard NAG routines produced some wildly inaccurate solutions,
but application of the method of conjugate gradients [7] provided much improved and
acceptable results. Figure 2 shows values of the torque factor for various rotlet positions and
pore lengths. For h > 0.1, N was taken to be 90, whereas for 0 < h < 0.1 it was necessary
to use values of N up to 500 in order to secure convergence of (2.28) and (2.29). Figure 2
shows that for the rotlet outside the pore with a membrane thickness of about one pore
radius, the torque correction is indistinguishable from that for a rotlet outside a semi-infinite
pore.

The limiting value of C, when h = 0 requires special attention. From (2.29) with h = 0
we have

C, = kK l (k) dk - a(A + Be-e '). (2.30)
Io I,(k) 2 -

Observing the slow-convergence behaviour of the partial sums of the infinite series in (2.30)
it became very evident that direct summation would be impossible. However, applying a
Shanks transform [8] it proved possible to consider all pore lengths. In the limit of a
zero-length pore, the value 0.42 was obtained for C1, in exact agreement with Davis et al.

361



362 R. Shail and I.M. Warrilow

[3], whereas for infinite 1, the interpolation value 0.65 of [1] was reproduced. Thus it appears
that a combination of large truncation values for N (- 500), the conjugate gradient method
and a non-linear convergence accelerator of Shanks overcomes the difficulties in the case
h = 0 first noted in [1].

3. The Stokeslet problem

In order to model a particle translating along the pore axis we next consider the problem in
which the rotlet singularity of section 2 is replaced by a Stokeslet of unit strength, oriented
parallel to the pore axis. We also suppose that a difference in pressures at infinity in the
half-space chambers z > 0 and z < - 21 drives a volumetric flow with flux M through the
pore. As in the rotlet configuration it is convenient to consider the cases with the singularity
at z = h (> 0) and z = -h separately, beginning with the z = h case, i.e., the singularity
outside the pore.

Observe that the velocity fields in the three flow regions have both radial and transverse
components; these fields must be found so as to satisfy the no-slip conditions on the
membrane/pore surfaces and also to ensure continuity of velocity and stress across the
pore/half-space interfaces. Thus it is essential to optimize the velocity representations used
and we employ those developed in [1], with appropriate modifications to allow for the finite
pore length and the existence of region III. Thus, in z > 0 we write the velocity and pressure
fields as

v' = v0 + zVO, - ,z + zVO - ,1 z + V,, (3.1)

PI = p0 + 2 ( ak + }' (3.2)

where 0P, ¢, are axisymmetric harmonic functions of (, z) with b = /aOz, and
(v0, Po) are the velocity and pressure fields given in [1] for the problem of an axial Stokeslet
of unit strength situated at z = h in front of a rigid plane wall occupying z = 0. Explicitly,

6hz(z + h)v = [Q(z - h) ( - ) ]3

+ [2 (2 1 ) + 2hz [ 2 - 2(z + h]] (3.3)

Po = Poo + 2 (3.4)

where po is the pressure as z -* o. The +,-dependent part of (3.1) has zero e-component
on z = 0, whereas the terms in ¢,, , provide a velocity field with zero z-component on
z = 0. In a similar manner the velocity and pressure fields in the fluid region III (z < - 21)
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are represented in terms of harmonic functions 03, 03 and j)3 as

v" = (z + 21)V'0 3 - 03z + (z + 21)VOb3 - b3 z + VCj3, (3.5)

pI"' = pt + 2u (3 r (3.6)

where 03 = a&O3/8z and p_ is the pressure as z o -o.
We now take integral representations of Ok , Ok (k = 1, 3) so as to satisfy the no-slip

conditions on z = 0, e > 1 and z = -21, e > 1. Following Keer [5] we write

k(Q, Z) = I Jo ik(t) {lo sin ct JO(ae)e {z+(k-l)l da} dt (3.7)

for k = 1, 3*, and since cos 0 a1k/b18 is harmonic we have as in Section 2 the appropriate
forms

0k (e, z) = { J t3 a'g((t) { lJ/2J( ait)Jl(eie+(k)} da} dt. (3.8)

In (3.7) and (3.8) the upper signs pertain to k = 1 and the lower to k = 3. The forms (3.7)
and (3.8) imply that Ok and b0 k/Oe are zero on z = 0 (k = 1) and z = -21 (k = 3) for

e > 1 thereby securing the vanishing of v' and v"' on the relevant membrane faces. Since the
flux through both z = 0 and z = -21, 0 0 < 1, is M we also have from (3.1), (3.5) and

(3.7) the relations

(3.9)i tjI(t)dt = - tj3(t)dt = 2(3-9)

In the pore region - 21 < z < 0, 0 < < 1, modified forms of the velocity and pressure
fields of [1] are employed, namely

v" = (EO02 + F)z + zVU - Uz + zVV - Vz + VW + O x VX - 2Xz + VY,

(3.10)

p = P + 2 2EoZ + a + a+ a } (3.11)

where E0, F0 are constants, P is a constant reference pressure, and U, V, W, X, Y are
axially symmetric harmonic functions with V = W/az. These harmonics are expanded

* Evaluation of the infinite integral in (3.7) produces the Green-Zerna [9] contour-integral representation used in

[1].
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as

U = E (Ae "' + Bne-"(z+=))Jo(no),
n=l

V = Z (Ce n: z + Dne-n(z+2))JO(n)
n=l

W = (n-'(C n,e" - Dne-" (z+2)Jo(ane),
n=l

X = E (En cos cnz + n Fsin Oenz)Io(anQ),
n=l

Y = E (G, cos anz + Hn sin oaz)I(an,), (3.12)
n=l

where cn = ni/l and An through Hn are constants. Note that the contribution to v" which
would arise from the missing constant terms (n = 0) in the Fourier expansions (3.12)4 and
(3.12)5 is subsumed in the term (Eo + F 2)z; further, the condition that the flux through the
pore be M gives the relation

M
½E0 +- F0= - (3.13)

Consider next the no-slip conditions on the pore walls, namely

v" e = v" z = 0 on e = 1, -21 z 0. (3.14)

Use of (3.10) and (3.12) in (3.14), followed by applications of the Fourier inversion theorem
with respect to z then yield sets of linear equations from which the coefficients Em, F,,
G, and Hm, m > 1, can be expressed as linear functions of A, through D". Explicitly, for
m = 1,2,...,

II (cm)Hm I (cnE = o( Em) - ,,A(lm) 'eo(n, m)Jo(an), (3.15)

F, -, I,(m) () I, eil(n, m)Jo(an), (3.16)
Io(where , ) mA( m)n=i

where

h(am) = /1(om) - Io(am)I2(Om) (3.17)
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and P0, T, are linear functions of A, . . , Dn defined by

MO(n, m) = - ( [(1 - e-2a'){(2An + 2Bn + Cn + Dn)2 - (C, + Dn)cO}

- 2al(O + X2m){(An + C)e-2 1"' + B, + D}], (3.18)

I (n, m) + a2)2 [(1 - e-2 ){(3a2 + c2m)(A n - B,) + 2a2(Cn - Dn)}

- 2an1(a + c2 ){(An + C)e-2a -_ B, - Dn)]. (3.19)

Further the m = 0 Fourier contribution provides the equation

21(E0 + Fo) = E o'-'[(l - e-2a')(2An + 2B n + C + D)
n=l

-2al{(An + C,)e-2o' + Bn + D}]Jo(a). (3.20)

Thus, using (3.13) and (3.20), Eo and F0 can be found in terms of M and the coefficients
{An,..., D}; in particular

2M 1 -2
Eo = -- + a,-'[(2A, + 2B, + C + D,)(1 - e')

-2anl{(A, + Cn)e-2,T' + B, + D,}]J(an). (3.21)

The velocity and pressure fields in the three fluid regions now comply with the kinematic
no-slip conditions, and it remains to derive equations for computing the functionsjk(t), gk(t),
k = 1, 3 and the four coefficient sequences {An } through {D, }, all in terms of the prescribed
flux M. A further eight conditions are to be satisfied, namely the continuity of v Q, v · z, the
normal and the shear stress components at the interfaces z = 0 and z = - 21, 0 < 0 1,
and these, together with (3.20) and the flux conditions (3.9), (3.13) make the problem fully
determinate although algebraically very complicated. In what follows much of this algebraic
complexity is omitted whilst preserving the essential steps of the argument.

Consider first the continuity of v e across z = 0 and z = - 21, 0 < e < 1; from the
representations (3.1), (3.5) and (3.10) two equations analogous to (2.13) and (2.14) result,
namely

( 2 gl(t) X
()2 e f (t2

)2)1/2 dt= I (Cn - Dne-2")J(anQ)

- Z an{QI(ae)Fn + I(aQ,)Gn}, (3.22)
n=l

365
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and

2 / 2 , Qg3(t) dt
Q J (t2 Q2)1/2 dt

= Z {2a,l(Ane- 2a.' + B,)+(2a, - l)e-2 + (2l- )e + l )D }J,(aQ)

+ Z a{0I(Q)Fn + Ii,(a,,)G}, 0 < Q < 1. (3.23)
n=l

Similarly, the continuity of v * z at z = 0 and z = -21 supplies the equations

(t2
_ 2)1/2 dt = E 2 + F - (A +ne-2)(

n=l
- Z [{czRe I( e) + 2( (Lx)EE - ;L (cae)H], (3.24)

and

e (t2 _ 2)l/2 dt = EOQ2 + Fo

- Z {(2al + l)e-2"'An - (21l - )B, + 2al(Cne- 2 ' - Dn)}Jo(an )

- Z [{aenIl(oae) + 2Io(,,e)}E - ,lIo(aoe)H], 0 < e < 1, (3.25)

and E, .. , H. in (3.22) through (3.25) can be eliminated in favour of An ... , D, using
(3.15) and (3.16).

Recalling that J (a,) = 0, n = 1, 2, ... , the Fourier-Bessel inversion theorem can be
applied to (3.22) and (3.23) to show that for m = 1, 2, ...

.J02(am)(C - D e-2I)

= (2) ft (sinamt - cos mt)g()dt, + 22r (3.26)

and

½amJo2(am){2al(Ame- 2om' + Bi) + (2a - l)e -2 am' + (2a + 1)Dm}

= (2) O \' m t co(s smt g3(t) dt - 2Jo (m) Z Y , + a Fn, (3.27)
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In a similar manner since J1(an ) = - J (an) = 0, the Fourier-Dini inversion theorem in the

"H + v = 0" case [10, p. 144] applied to (3.24) and (3.25) yields, for m = 1, 2, . . .

2o. mJ2(m)(Am + Bme -2m) = 2amlJo(am)Eo

- Iojl(t) sin amt dt - 2Jo(am)a (l + (C)2 E, (3.28)

and

1a .mJ 2(a){(2aml + )e-2""'Am - (2aml - 1)Bm + 2ml(Cme-2a,' - Dm)}

= 2am'JO(am)EO + 0 j3(t) sin amt dt

D(a, + a)22Jo(m)a3m (2 - + 2) 2 n (3.29)

Finally the stress continuity conditions on z = 0 and z = - 21, 0 < e < 1, are imposed.

Using the expressions for the stress components Zz and rz, detailed in [1], we find the
following relations analogous to (2.15) and (2.16):

( 2 1 d , (t3gl (t) dt 6= + Eo - ai(Cn + D.e-2)a,)O
2 ,e de (e2 _ t

2 )12 (e2 + h2)5 /2 

- Z aC[{aneIO0(e) + I(aQe)}En - a;I 1 (a )HI, (3.30)
n=l

dQ fo (e2 _ t2)1/2 dt = Eo 

+ E a[2a"l(Ae-2 - B.) + f(2a.1 - l)e-'"f'Cn - (2anl + )D. JI (ane)
n=l

- Z [{0n00(Cn0) + I,(aQ)}En - anll(aQ.)H], (3.31)

d' 33t) 6h3 Go -2 B )jja.L
d T ( 2 _ t2) 1/ 2 dt = Q + (o2 2)52 + a(An - Be)

+ Y a[OC[{3IO(anQ) + ceI(Oe)F + (2 ano(OenQ)Gn]C (3.32)
n=l
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and

id tj3(t)

e deQ J ( 2 _ t2 )1/2 t = Q2-4E 

+ an{(2 nl + 1)e-2 "'An + (2anl - 1)B, + 2anl(Ce - 2 a + Dn)}Jo(anO)
n=l

+ Z ;,[{310(na) + aeQI,(cnQ)}F, + Io(anQ)Gn], (3.33)
n=l

all for 0 < e < 1, where Q = (P - p,)/2 #2, Q2 = (P - p)/ 2 p. Proceeding as in Sec-
tion 2, integral equations (3.30) through (3.33) are now solved forj, (t), j3(t), g (t) and g3(t)
with the results that for 0 < t < 1,

2tQ1 4t(t 2 + 3h2) 2 21 2
j,(t) = + (t2 + 2 ) +2 (A - B e-2) sin a,,t +- E G(ac, t)F,,

it 7r( + ) 7r n=l 7 n=l

(3.34)

j3(t) = (+ - {(2anl + 1) e-2 'An + (2anl - 1)Bn

~~~n=

,(7r~ 1/~-2a 2 2
-+ 2a,)Dl}(Ce D,) sin at - G(n H , t)F,, (3.35)

where
G(nt) = (2- sinh t + ant cosh ent, (3.38)t os a,

(2g'(t) =sin + t 3 C an

- H(a,, t)E., (3.36)

and

(3 9= 3 q - + ~ -2l(Ae- ' B) (al -- 1)e'"tC

- Qsin ant co an t - -ZH( nt) En, (3.37)

where

I, o,,) ) ,,,,,,,, T ,,, ,VDII ·nll (3.38)
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and

H(n, t) = xnt2 sinh a,t + Io( ) (sinh ,t - a t cosh ant).
11(c41)

(3.39)

The constants Ql, Q2 in (3.34), (3.35) can be expressed in terms of M and the coefficient
sequences {An} - {F} by means of the flux conservation relations (3.9), viz.

3M 6
4 1 + h2 +3 q (A, - Be ) cos - sin a.)4 1 + h~~n~

· l=I (1;;j ( nI(, n3 I- cosh Cn - (2 _I(_)

Q2 = - 3 + 4Eol + 3 2 {(2anl +

+ 2l(e 2alC + Dn)} (Ua cos a -

+ 3 (0 n ) cosh , -
nl~lYo- I (c")

( I (n)
V nIl (50 

+ 1) sinh ; F,

l)e-2a"'A + (2an, - 1)Bn

sin an)

+ ) sinh Xn} F.

We now have available equations sufficient to express the functions j, (t), j3(t), g, (t) and
g3(t) as linear combinations of the coefficients A, through Dn, and the ultimate sets of linear
equations for determining these coefficients are supplied by substituting for j, through g3 in
(3.26)-(3.29). Defining

O, = J(as)T,(s, n), i = 0, 1,
s=l

these sets of equations take the form

2JO2(am) (Am + Bme ) -E {Mn(m, n)An + M,2(m, n)Bn
n=1

+ M3(m, n)C + Ml4(m, n)D - E,,(m, n)E,1 + E,2(m, n)Oo} = Ulm,

(3.42)

(3.43)

Jo(am) (Cm - Dme m) + E {M 21(m, n)An + M 22 (m, n)Bn
n=1

+ M23 (m, n)C, + M 24 (m, n)Dn - E21(m, n)O1n + E22(m, n)O0n,, = U2m,

(3.40)

(3.41)
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½Jo2(am) {(20am + )e-2mlAm + (1 - 2aml)Bm + aml(e-2mtlCm - Dm)}

+ E {M 31(m, n)A. + M32(m, n)B. + M33(m, n)Cn + M34(m, n)D,
n=l

+ E,,(m, n)O,. + E,2(m, n)O,,} = U3m, (3.45)

1J2(am){2aml(Ae-2e' + Bin) + (2al - l)e-2"'Cm + (2aml + l)Dm}

+ I {M 4,(m, n)A, + M42(m, n)Bn + M43(m, n)Cn + M44(m, n)Dn
n=l

+ E21(m, n)On + E22(m, n)eOn} = U4m, (3.46)

all for m = 1, 2, .... The right members Uim, i = 1, ... , 4, of (3.43)-(3.46) are given by

Ulm = 3 - 2 (am cos am - sin a) 4M Jo(Am)
U im2ta( t 1 + h2 )

+ 4 i t(t2 3h2) sin am t dt, (3.47)
/[a m fo(tT + h 2

8M 4h sin am
U2, = 8M 3{- m cos am + (3 - a) sin am} 4h sin a+ )

37r2am na(1 h )

(h2 - t
2
)

f (h2 + t2)2 cos at dt, (3.48)

4M 3M
U3m = Jo(m) + 2-af3m (am cos am - sin am), (3.49)

and

U4 = 8M {-3am cos a + (3 - a) sin am}. (3.50)

The remaining coefficients MJ(m, n), i, j = 1, ... , 4, and Ei(m, n), i, j = 1, 2, are all func-
tions of 1, am, a,, ;n and am; for reference they are recorded in the Appendix. It is of interest
to note that only infinite summations are involved in (3.43)-(3.46), whereas in the semi-
infinite-pore case [1] the coefficient matrices contain infinite integrations. Thus from the
computational point of view the algebraic complexity of the truncated forms of (3.43)-(3.46)
is somewhat off-set by the absence of numerical integrations.

When the Stokeslet is placed within the pore at z = -h, 0 < h < 21, the velocity
representations (3.1) and (3.10) need modifying, the form of v"l' (equation 3.5)) remaining the
same. In (3.1) the singular Stokeslet terms v is now omitted, and we redefine v to be
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the velocity field produced by an axial Stokeslet placed at z = -h in an infinitely long
fluid-filled circular cylinder of unit radius. Then [11] we have

V0 * Q =e(z + h) _ o k{eF(k)I(k) - G(k), (ke.)} sin k(z + h) dk, (3.51)

2 2
vO * R2 R - - fo [F(k) {ekI (ke) + 210(ke)} - kG(k)lo(ke)] cos k(z + h) dk,

(3.52)

where

F(k) = -2{K,(k)l,(k) + Ko(k)2 (k)}/ilA(k), (3.53)

G(k) = - 2/lkA(k), (3.54)

and the associated pressure field is

Po =2( + h) 2o kF(k)lo(kQ) sin k(z + h) dk. (3.55)
R2

The velocity and pressure v" and p" in the pore are now taken to be the forms (3.10) and
(3.11) with v and po added to the right-hand sides; the definitions (3.12) of the various
constituent harmonic functions remain the same. The computations leading to (3.43)
through (3.46) can now be repeated, resulting in a modified system of four coupled infinite
sets of linear equations for the coefficient sequences {An } - {Dn }. The left members of these
equations are identical to (3.43) through (3.46), but the right members are replaced by
functions J, i = 1, . . ., 4, m = 1, 2, ... , considerably more complex then the Um of
(3.47)-(3.50). To avoid over elaboration they are not recorded here, but full details may be
had from the authors.

4. Drag on a small sedimenting particle

Suppose that a small sedimenting particle is situated on the axis of the pore at a point P with
z-coordinate h (> 0) or - h depending on whether the particle is in the half-space z > 0 or
the pore. We assume that the particle translates along the pore axis parallel to a principal
axis of resistance with a velocity UOz; denote by - Fz and - F,z the viscous drag forces on
the particle for motion in the bounded and everywhere infinite fluid. As in Section 2 the pore
radius is c in physical units with b = ch, and a is a typical particle dimension. For any
position of the particle let v* be the regular part of the velocity field, in the fluid region
containing the particle, which obtains if the particle is replaced by an axial Stokeslet of unit
strength. According to Brenner [2] when there is a volume flux M of fluid through the pore
F is given by

F 1 nl.cU, (1 MwU ) (1 + O(a/L)), (4.1)F 8 rcUO( U 
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where L = max(b, c) and w,(P) is the axial fluid speed at P appropriate to the problem of
a unit flux of fluid through the pore in the absence of the particle. The drag factor C2 in (4.1)
is defined by

C2 = -v*(P) z (4.2)

where here v*(P) pertains to the case M = 0, a situation in which the error in (4.1) can be
shown ([2], [12]) to be O(a/L)3.

In order to evaluate C2, suppose first that the particle is in z > 0. Then v* follows from
(3.1) and (3.3) by omitting the terms in v0 containing inverse powers of R,. From (3.7) and
(3.8) C2 is now expressed in terms of j, (t) and g, (t) as

C2 = 2h ° (t2 + h2)2 (t2 + 3h2) jl(t) + 2h( t2gl(t) dt, (4.3)

wherej, (t), g, (t) are found from (3.34), (3.36) and (3.40). The appropriate equations for the
coefficient sequences {An} - {D)} are obtained by setting M = 0 in the right-hand sides
(3.47)-(3.50) of equations (3.43)-(3.46), the resulting linear system being solved by trunca-
tion. For the particle inside the pore at z = - h, 0 < h < 21, the relevant velocity com-
ponent in (4.2) follows as the regular part of (3.10) augmented by the field v0 with com-
ponents (3.51) and (3.52). There results

C2 F0 - {2F(k) - kG(k)} dk

- {(ah + )e-anhAn - (nh - )e-o"(2 -h)B, + unh(Cne- ° h - Dne *(21-h))}
n=l

- Z {(2En - x,H) cos ah - (2Fn + caGn) sin ah}, (4.4)
n=l

where F0 follows from (3.13) and (3.21) and F(k), G(k) are defined in (3.53), (3.54). The
equations for {A } - {D,} are (3.43)-(3.46) with right-members obtained by setting M = 0
in the Qm of Section 3, and are again solved by truncation.

One further quantity of interest is the additional pressure drop, Ap = p_ - p,, due to
the presence of the sedimenting particle. For the particle in the half-space chamber z > 0,
and M = 0, we have from (3.40) and (3.41) that

- = Q2 - Q
2+

- 6 A2 + 4E01 + 3 Z a- 2(a" cos a" - sin a.)[{(2al + )e -1 A,

+ {2al - 1 + e-2aB + 2anl(Cne-2a l + D)]. (4.5)



The sedimentation of a small particle

For the particle within the pore the pressure drop is similarly found as

2u {1 + (h 2)2 1 + h +2 4Eo

+ 3 Z arr2(a, cos a, - sin a,)[{(2anl + l)e-2 "' - l}A,
n=l

+ {2al - 1 + e-2"'I}B. + 2anl(Ce - 2 "' + D)]

- 6 o {sinh kF(k) - k - ' (k cosh k - sinh k)G(k)} sin k cos (h - )k dk.

(4.6)

The results of the detailed calculations in the zero-flux case, using the numerical techniques
described in Section 2, are illustrated in Figs 3, 4 and 5. Figure 3 gives the variation of the
drag factor with particle position for various pore lengths; observe that for a pore length of
about 2 pore radii the drag-factor curve is virtually indistinguishable from that for a
semi-infinite pore for particle positions with z-component z in the range -1 < z < oo.
The maximum drag factor occurs when the particle is at the mid-point of the pore, and
Figure 4 shows the variation of this maximum with pore length; the horizontal asymptote
is the semi-infinite length pore value of C2, namely 2.806. Figure 5 provides curves of
additional pressure drop against particle position for various pore lengths. In Figs. 3 and 5
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° 2.2
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Fig. 3. The drag factor C2 plotted against particle position for various pore lengths (zero-flux case).
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Fig. 5. The additional pressure drop (zero-flux case) due to the presence of the particle plotted against particle
position for various pore lengths.
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the zero-length pore results are calculated from the formulae

C = (htan-'h + 1 + h2 (1 h2) 2 )' 2 (4.7)ir~( h2 2~ 1 - h 2'

quoted in [1].
We now turn to the case in which there is a non-zero flux through the pore. As noted

earlier the drag calculation using (4.1) requires only the further knowledge of w, (P), the axial
fluid speed, with unit flux, at the particle position P in the absence of the particle. The
appropriate results can be obtained by setting M = 1 and omitting from the right-hand sides
of the systems of linear equations all terms involving h (or, equivalently, letting h -* oo).
However the coordinate system used in Section 3, whilst optimizing the difficult Stokeslet
calculations, does not exploit the symmetry of the singularity-free problem about the
mid-plane of the pore. Therefore we give a reformulation of this problem with the origin of
coordinates O relocated at the centre of the pore. The membrane faces are now z = + ,

> 1, and it is only necessary to consider the regions z > (I) and the half-pore 0 < z < l,
0 < e < (II), continuation of the solution into the remaining fluid regions being effected
by noting the even and odd parities of v * z and v e with respect to z.

Appropriate velocity and pressure representations in the two fluid regions are as follows,
all constituent functions being axially symmetric harmonics. In z > I,

v = ( - )V - z + ( - I)V - z + V, = (4.8)

Pl = P r + 2 (0z + q' (4.9)

where

(Q, z) = - j(t) {f sin ct J0(e) e- (z- ) dat dt, (4.10)

a = -l t3/2g(t){ j C/2 J 3/2((ao) J(e) e-a(z-) d dt. (4.11)

In 0 < z < 1, (3.10) and (3.11) are used with the following redefinitions of the harmonic
functions U, . . ., Y:

U = Z An(e(z-I) + e- "(+l)) Jo(a),
n=l

V = Z B,(e°a(Z-I) + e- "(Z+)) Jo(a),
n=l
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W = a-~1B(e'(z-') - e -un(z+)) J0 (aQ),
n=l

X = ~ EnIo(cao) cos o.z, Y = Z FIo(a Q) sin z. (4.12)
n=l n=l

Imposition of the no-slip condition on the pore walls and the velocity and stress matching
across z = 1, 0 < Q < 1, now produce coupled infinite sets of linear equations for {A. } and
{B}, as follows. Define

o = 2 (,J(a,) [a{(a + e2)- 2(1 - e -2')}A,

i (a,2 + 22_ ()

+ {al(o2 + c2)(1 + e- 2 ) - (a 2 - an)(1 - e-2')}B]; (4.13)

then

J 0
2(am)[{1l - aml + (ml + )e-2mJ'}Am + aml(1 - e )Bm]

+ Z {M;l(m, n)A, + M;2(m, n)Bn + El2(m, n)O.}
n=l

3 4Jo(a,)
3 (am cos am - sin am) - 2 (4.14)

and

2J2(am)[aml(l + e-2m')Am + {aml + 1 + (aml - )e-2m'}Bm]

+ Y {M2,(m, n)A, + M22(m, n)B. + E22 (m, n))n}
n=l

1
= - -T(Um), m = 1, 2, . (4.15)

In (4.14) and (4.15), (am), E12(m, n), E22 (m, n) are defined in the Appendix and the remain-
ing coefficients are (with K(am, a,) also given in the Appendix)

4J(am)J(an) {al - 2 + (l + 2)e - 2
n

}

AM4(m, n) =

+ {al - + (al + 1)e-2"'} K (am, a,), (4.16)

M'2 (m, n) = M(m, n) + (1 - e -2) {4(oaanl)-IJo(am)Jo(an) + K(am, a)}, (4.17)
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M2, (m, n) = 2 e ( - em){ael - 2 + (l + 2)e-2d },

(4.18)

where E25(m, n) is given by (A18), and

M22(m, n) = - {anl + 1 - (anl- )e -2 n"} E25(m, n)
IWOm

+ Z( m){ nl -- 1 + (n I + )e -2n} (4.19)
an'

The coefficients E0, Fo in (3.10) are given in terms of {An}, {Bn} by

E 0 = - - an- Jo(an)[{al - 2 + (al + 2)e-2a"t}An

+ {nl - 1 + (anl + )e-2,"}B,], (4.20)

with

F0 = -- Eo0 . (4.21)

In order to evaluate w,(P) at P(e = 0, z = h), suppose first that h > ; then from (4.8),
(4.10) and (4.11) we find that

w,(P) = { t2 + 3(h 1)2 + tj() + 2 (2)2}2 2{3(h -+ )t2g(t)] dt

(4.22)

Similarly, for 0 < h < 1, (3.10) and (4.12) provide the expression

wz(P) = Fo + E [ea(-') {((anh - 1)A, + ahBn} - e- n( +') {(anh + 1)An + onhB,}]
n=l

+ , (-2En + oaF,) cos anh. (4.23)
n=l

The pressure drop between z = - oo and z = + o is Ap = p_O - p,, where

Ap = -3 + 4Eol- 6 a on-2 (sin an - n cos a)
2/ 2x n=l

x [anl - 1 + (l + )e-2,,dAn + ale-2B]'B. (4.24)
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Figure 6 gives a plot of the axial flow speed wz (P) as a function of h and various pore lengths,
there being unit flux through the pore. Also illustrated in Fig. 6 is the corresponding curve
for an infinitely thin membrane, for which

Z(P) 27r(h2 + 1) (4.25)

Figure 7 shows the scaled pressure drop, AP/21u, as a function of pore semi-length. As a check
on our analyses the results computed from (4.24) were compared with those obtained from
(4.5) using a large value of h (- 50) and very satisfactory agreement to three decimal places
was obtained for pore lengths small compared with h. The results also agree with those of
Dagan et al. [4], but it is noteworthy that the method given here involves a doubly-infinite
set of unknown coefficients, whereas in [4] a four-fold infinity has to be found.

5. Conclusion

The results illustrated in Fig. 6, together with those derived earlier for the singularity-driven
zero-flux flow, provide via equation (4.1) a complete description of the approximate drag
experienced by an axially located small particle sedimenting through a circular pore in a
membrane of finite thickness. If the particle is also rotating about the pore axis then the
couple approximation is supplied by the formulae of Section 2. These flows are assumed to
be sufficiently slow for the quasi-steady Stokes approximation to be valid, and the computa-
tions bridge the gap between the infinitely thin membrane model of Davis et al. [3] and the
semi-infinite pore used in [1]. Both these approximations are valuable, and the latter is very
accurate for pore lengths of the order of two pore radii or greater.

The algebraic analysis of the finite-length pore model when the flow is driven by an axial
point force (Stokeslet) is complicated, and the configuration probably represents the limit of
what is practicable using potential theoretic methods. Such procedures are most suited for
pores of circular cross-section, and for other geometries numerical methods are to be preferred.
To this end the present authors are investigating the use of the method of subareas with a
view to eventually discussing, for example, pores of elliptical or rectangular cross-section.

Some progress can be made with potential methods in non-axially symmetric configura-
tions. In particular the problem of a shear flow along the wall of the membrane, the pore
being of semi-infinite length, can be reduced to the solution of four simultaneous infinite sets
of linear equations, and results will be reported elsewhere. Replacing the shear flow by a
rotlet or Stokeslet with axis oriented parallel to the membrane wall is a further problem
which can be formulated in principle, but the super-complexity of the algebra makes this a
daunting undertaking. (See [13] for the solution of these asymmetric problems when the
membrane is infinitely thin.)
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Appendix

In this Appendix we list the various coefficients Mi(m, n) and Eij(m, n) appearing in the
linear systems (3.43)-(3.46). Define K(am, a,) and T(am) by

32 [6(am cos am - sin om) (a cs a, - sin an)

22 t sin (am- a,)

am - an

T(am) = {-3am cos am + (3 - a2m) sin am}.

Then the coefficients in (3.43) are

M,,(m, n) =

M 12(m, n) =

M 13(m, n) =

4Jo(am)J(an) -2 _

laman {(1 + ,l)e - 1} - K(am, a,),

2Jo(am)Jo(an) 2e 1 -2 1
1am,0 {(1 a+ 2al)e- 2 -

1 },

M,4(m, n) =

E,,(m, n) =

2Jo(am)Jo(a,,)
lam an

2I, (an) 
r/lam on, A(oCn) (

(A5)- 1 + e-2al},

/l (n)) E1 3(m, n) + t",E14 (m, n)}I~~ (;) 3~
6 (am cos a, - sin am) rf. Tr A.. \ . · .. \- .rL -.

Ltnalk"In I 'O knlJ o..... .n - ;nlO(On) cosh an],

(A6)

E,2(m, n) = (A7)
2(a m), + )2 (On )
[(a2m + 2n)2A(n)

where

E13(m, n) = (an cosh a, sin am - am sinh ac cos am)/(am + nc), (A8)

E,4(m, n) = (.n sinh an sin am -am cosh an cos am)/(am, + )

- {(c2 - ma) cosh a, sin am - 2amO, sinh an cos am}/(am, + na)2 (A9)

K(am, a,) =

sin (am + a,) 
am + an , I

(Al)

(A2)

(A3)

(A4)

" " -L " ulnn rr

lrlo'mOanA(ln )
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In equation (3.44) the coefficients are

M21(m, n) =

M2 2(m, n) =

M23(m, n) =

M24(m, n) =

JO(a) {(1 + a)e -2
- 1} T(m ),

a, l

JO(an) {e-2 n, _ 1 + a"nl}r(am ),
a l

2a l {(1 + 2a,,l)e - 2 t - 1}(am) + -E 2(m, n),

(a) {e- a _ 1 + 2anl}(m) + E2s(m n)e - 2

2a, l /ram

2aonam Jo(am)I ( n)
I(a + )2 A( )

= ot am E12(m, n),

E22 (m, n) =

where

E23(m, n) =

2
ra"A(cn) {E23(m, n)I(cz(a) - E24(m, n)IO(x.)},

1
am(OC2 + 02) {n cosh C,(sin a, - am cos am)

nc~+o,

- am sinh ;X(cos am + am sin am)}

(a n - 02,) sinh ce, cos a, + 2cxa," cosh x, sin am
+ + o5)2

E24(m, n) =

and

E2,(m, n) =

sin am sinh a (a, sin am cosh a, + a, cos am sinh c.,)
am an am 

+
n

sin (a + am) sin (a, - am) sin am sin a,
2(a,, + am) 2(a,, - am) ama,n

In (3.45) the remaining coefficients are

M31(m, n) = M,,(m, n) + {1 + (1 + 2anl)e -2"'}K(am, an),

M32 (m, n) = MI 2(m, n) + {2ainl - 1 - e-2al}Kc(om, a,),

M 33(m,n) = M,3(m, n) + 2a,,le-2'K(am, an),

(A10)

(All1)

(A12)

(A13)

E2 1(m, n) = (A14)

(A15)

(A16)

(A17)

(A18)

(A19)

(A20)
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(A21)
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M3 4(m, n) = M 4 (m, n) +

Finally in (3.46) we have:

M4 1 (m, n) = M2 1 (m, n) -

M42(m, n) = M22 (m, n) +

M4 3 (m, n) = M23 (m, n) -

2 unlc(am, oa.)

41n e-2o~ 
team

41¢a. E2 5(m , n),

2 {1 + (2u, 1- )e-2"l }E25(m, n),team

and

M44 (m, n) = M2 4(m, n) + 2 {1 + 2I - e -2}E 25 (m, n).
Itam
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